If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-24x+4=0
a = 2; b = -24; c = +4;
Δ = b2-4ac
Δ = -242-4·2·4
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{34}}{2*2}=\frac{24-4\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{34}}{2*2}=\frac{24+4\sqrt{34}}{4} $
| x+86-x+56+60=180 | | (3x-4)-(5x+6)=0 | | x+86-x+56-60=180 | | 5x+6=38-5x | | x+86+x+56+60=180 | | 3x+16=5x-6= | | |4x+3|=20 | | 6x+3=-2x+1= | | 10(0.5x)+1.3=4.8 | | -3x+2=x+10= | | 7x+6=9x-2= | | 7x+2=-7+3x+25 | | y=1/3y+4=16 | | 4x-1=9x-2= | | 4y^2-10y=3 | | 51k=3 | | 2x-1=7x+5 | | 4x=15x= | | 4x=15,x= | | 19x+6+10x=180 | | 2u=-u+8 | | j−3=−7 | | x=3x-450 | | -1/3+y=-4/5 | | 2y-(y-1)=12 | | 3-4z/3=5 | | S=-1-2p/1-p | | 5=(1+4v) | | (-x+26)=(2x-10) | | 5X+120=180-3x | | 2x-3=4x-7= | | 0=8+4x-16-12 |